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Abstract

Antiplane shear deformation of several edge-cracked geometries is considered. Analytical expressions are derived for

the mode III stress intensity factor (SIF) of circular shafts with edge cracks, bonded half planes containing an interfacial

edge crack, bonded wedges with an interfacial edge crack and also DCB�s. The results are extracted for simple isotropic

materials as well as anisotropic materials and also bonded dissimilar materials and it is shown that the same expressions

are obtained for the SIF under the same geometries but with different above-mentioned material properties. Different

boundary conditions are assumed and the SIF relations are derived in each case. As the special cases, the SIF�s of the
two bonded quarter planes containing an edge crack at the interface and infinite strip with a semi-infinite edge crack are

extracted which coincide with the results cited in the literature.

� 2003 Published by Elsevier Ltd.
1. Introduction

Analytical expressions for the stress intensity factors (SIF) of different geometries and various loadings

are important in fracture mechanics. In the area of mode III problems, a number of contributions are

related to the problem of finite or semi-infinite cracks in an infinite medium (Suo, 1989; Shiue et al., 1989;
Choi et al., 1994; Lee and Earmme, 2000; Shahani and Adibnazari, 2000; Shahani, 2001). However, the

interaction of finite boundaries on the cracks affects the severity of the induced stresses near the crack tip.

Also, edge cracks vastly occur in composite laminates and bonded structures. Hence, edge delamination or

edge debonding between the laminas or dissimilar components has appeared to become the main failure

mode of these materials.

Most interfacial edge crack problems analyzed in the literature to date considered cracks between two

bonded quarter planes. In the present paper, analytical expressions are derived for the stress intensity

factors in different geometries including isotropic and anisotropic materials and dissimilar bi-materials. In
all of the problems concentrated antiplane tractions are assumed to act which allows the solutions to be

used as the Green�s function for obtaining the SIF of any general distribution of tractions. At first, mode III
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SIF�s are derived for a circular shaft containing an edge crack, under different boundary conditions on the

crack faces and circular boundary of the shaft, made of isotropic as well as anisotropic materials. At the

next part of the paper, first a closed form solution is extracted for the stress distribution in a bi-material

infinite wedge, which has the advantage that shows geometric as well as load singularities explicitly, while
the latter one is not apparent from the results previously published by the author. Then, the SIF in the

problem of bonded half planes with an edge crack at the interface is obtained. Next, the SIF is extracted for

a double cantilever beam (DCB) using the conformal mapping technique. Finally, the SIF is derived for

bonded wedges containing an interfacial edge crack. It is shown that in all cases, the obtained results for the

SIF�s are independent of material property including isotropy, anisotropy and dissimilarity of the bonded

materials. In the special cases, the results coincide with the published results in the literature.
2. Stress intensity factor in a circular shaft containing an edge crack

Kargarnovin et al. (1997) extracted explicit solutions for the stress distribution in an isotropic finite

wedge under different boundary conditions. In the case when the edges of the wedge are subjected to

concentrated antiplane tractions with equal distances from the apex (h1 ¼ h2 ¼ h) and the arc segments of

the wedge is traction-free, letting the apex angle of the wedge equal to 2p, causes the wedge to resemble a

circular shaft with an edge crack under antiplane shear stresses on the crack faces (Fig. 1).

In this case, the stress component shz in the r6 h region reduces to
shzðr; hÞ ¼
P
hp
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Fig. 1. Schematic view of a circular shaft containing an edge crack.



A.R. Shahani / International Journal of Solids and Structures 40 (2003) 6567–6576 6569
The stress intensity factor becomes
KIII ¼
ffiffiffi
2
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If KIII is defined as
KIII ¼ b
Pffiffiffiffiffiffi
pa

p ð4Þ
It is seen that b varies from 2
ffiffiffi
2

p
, when the point load is applied at the end of the crack face (h ¼ a), to

infinity, when the concentrated load is applied at the crack tip. If the shaft of Fig. 1 is fixed on its cir-

cumference instead of traction-free condition, the corresponding equation given by Kargarnovin et al.

(1997) reduces to
shzðr; hÞ ¼
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Using Eq. (2), we have
KIII ¼
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Referring to the definition in Eq. (4), It is seen that b in this case varies from zero at h ¼ a to infinity, when

the point load is applied at the crack tip.

From the results obtained by Kargarnovin et al. (1997), it may be seen that the familiar square root

singularity at the crack tip would not be encountered in all cases, for example in the case when one of the

crack faces is subjected to traction and the other to displacement boundary conditions, a singularity of the

order 3
4
is observed at the crack tip and thus computing the stress intensity factor from Eq. (2) gives an

infinity one.

In a recent paper, Shahani (1999) has derived explicit analytical expressions for the stress distribution in
an anisotropic finite wedge, subjected to different boundary conditions. Applying a ¼ 2p (the wedge apex

angle) in the traction-traction case, and then computing the stress intensity factor with the aid of Eq. (2), it

is observed that the result is released from the effect of material property of the anisotropic material and the

same result as Eq. (3) is obtained, as expected.

If the circular shaft of Fig. 1 is subjected to concentrated antiplane tractions on its circumference, as

shown in Fig. 2, the problem should be analyzed separately. For this purpose, we consider the finite wedge

of Fig. 3, with radius a, subjected to concentrated antiplane traction on its arc segment and fixed on one of

its edges. The other edge of the wedge is traction-free. The constitutive equations for isotropic materials
undergoing antiplane deformation reduce to
srz ¼ l
oW
or

shz ¼
l
r
oW
oh

ð7Þ
The equilibrium equation of the problem in terms of the only non-zero displacement component, W , should
be written as
o2W
or2

þ 1

r
oW
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þ 1

r2
o2W

oh2
¼ 0 ð8Þ



Fig. 2. Circular shaft with an edge crack subjected to antiplane concentrated tractions on its circumference.

Fig. 3. Finite wedge with an antiplane concentrated traction on its circular segment.
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where W is a function of in-plane coordinates (r; h). The corresponding boundary conditions of the problem
are as follows
W ð0; hÞ is a finite value

srzða; hÞ ¼ Pdðh� bÞ

W ðr; 0Þ ¼ 0

shzðr; aÞ ¼ 0

ð9Þ
Since the boundary conditions of the problem are homogeneous in the h-direction, it can be solved by

the method of separation of variables. The solution procedure is not given here, for the sake of brevity. But
it may be shown that the displacement and stress components are obtained as follows



Fig. 4. Schematic view of a semi-circular shaft.
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lp

X1
n¼1

1

2nþ 1

r
a

� �ð2nþ1Þp
2a

sin
ð2nþ 1Þpb

2a

� �
sin

ð2nþ 1Þph
2a

� �

srzðr; hÞ ¼
2P
a

X1
n¼1

r
a

� �ð2nþ1Þp
2a �1

sin
ð2nþ 1Þpb

2a

� �
sin

ð2nþ 1Þph
2a

� �

shzðr; hÞ ¼
2P
a

X1
n¼1

r
a

� �ð2nþ1Þp
2a �1

sin
ð2nþ 1Þpb

2a

� �
cos

ð2nþ 1Þph
2a

� �
ð10Þ
Letting the apex angle equal to p (a ¼ p), we have a semi-circular shaft, as shown in Fig. 4, which is
equivalent to the edge-cracked circular shaft, shown in Fig. 2, because of symmetry.

Thus, the stress intensity factor in the circular shaft of Fig. 2, may be calculated as
KIII ¼ 2
ffiffiffi
2

p
P

ffiffiffi
a
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r
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b
2

ð11Þ
3. The SIF of bonded half planes containing an edge crack at the interface

Bi-material wedges composed of two bonded isotropic wedges with dissimilar materials and infinite

radius under concentrated antiplane shear tractions were recently analyzed by Shahani and Adibnazari

(2000) and full-field solutions for the stress components were obtained. In the case of equal apex angles
(h1 ¼ h2 ¼ a), the following relation was given for the r6 h region, where h is the distance of the con-

centrated tractions to the wedge apex:
s1hzðr; hÞ ¼
P
ha
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It is observed that this relation is independent of material property and thus, the relation does not differ for

similar material properties of the two bonded wedges. Hence, as explained about the equivalence of Figs. 2

and 4, the same result should be obtained from the corresponding equation of a finite simple wedge, with
apex angle a, under traction–displacement boundary conditions, given by Kargarnovin et al. (1997), by

letting a ! 1. Defining q ¼ r
h, we have q < 1 in the r < h region and thus, Eq. (12) can be written as
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P
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where Re stands for the real part. Since the absolute value of the expression in the summation is less than

unity, the following equality should be used
Fig. 5.

on the
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to write Eq. (13) in the form
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Computing the real part and facilitating terms result in
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This is a closed form solution for the stress component, shz, in the r6 h region. It has also two other ad-

vantages with respect to Eq. (12):

i(i) The possible singularity, r1�
p
2a, shows itself explicitly in the denominator of Eq. (16). The power of this

term is the familiar order of stress singularity, which is in agreement with those published by Kargarno-
vin et al. (1997) and Shahani and Adibnazari (2000).

(ii) Applying the coordinates of the point of the application of the concentrated traction (r ¼ h and h ¼ a)
in Eq. (12) gives no result other than zero, but applying r ¼ h and then h ¼ a in Eq. (16) results in the

infinity traction which corresponds to the load singularity arising from the concentrated nature of the

applied traction.

Letting a ¼ p in Eq. (16), the problem reduces to that of the two bonded half planes with an edge crack

at the interface (Fig. 6(b)):
shzðr; hÞ ¼
P

p
ffiffiffiffiffi
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p cos
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It is seen that the familiar square root singularity is explicitly appeared in the above relation. Computing

the stress intensity factor yields
(a) A semi-infinite strip under traction–displacement BC�s on the boundary y ¼ 0. (b) A half-space under the same type of BC�s
boundary v ¼ 0.



Fig. 6.

faces.
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KIII ¼
ffiffiffi
2

p
Pffiffiffiffiffiffi
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The same result could also be obtained from Eqs. (3) and (6) by letting a ! 1, but the above relations are

extracted for concluding the results mentioned following Eq. (16) and also, for further applications in the

next part of the paper.
4. The SIF in a DCB subjected to antiplane shear loading

The mode III stress intensity factor in a DCB can be derived from that of an elastic space containing an

edge crack. The conformal mapping
w ¼ f ðzÞ ¼
cosh pðzþaÞ

H

h i
cosh pa

H

� 	 � 1 ð19Þ
will map the strip of Fig. 5(a) onto the half-plane of Fig. 5(b). As previously explained, because of sym-
metry, these are equivalent to Fig. 6(a) and (b), respectively. It was seen in the previous section that the shz-
stress component in the problem of Figs. 5(b) and 6(b) are of the form of Eq. (17). On the other hand, the

shz-component can be written as the real part of a complex analytic function, in the w-plane
shz ¼ Re½X0ðwÞ� ð20Þ

Now, using Eq. (15) with a ¼ p and Eq. (20) and keeping in mind that w ¼ reih, the complex function X0ðwÞ
can be computed
X0ðwÞ ¼ Peih

p
ffiffiffi
h

p
w

1
2

h
hþ w

ð21Þ
The complex function X0ðwÞ can be expressed in terms of the complex variable z, in the z-plane, using the

following relation:
X0ðzÞ ¼ X0ðwÞ � w0ðzÞ ð22Þ
(a) A DCB subjected to antiplane shear loading. (b) An edge-cracked space subjected to antiplane shear tractions on the crack
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The SIF in the problem of Figs. 5(a) or 6(a) can be derived using the following relation (Hellan, 1985),
KIII ¼ lim
z!0

ffiffiffiffiffiffiffi
2pz

p
X0ðzÞ ð23Þ
Noting that
w0ðzÞ ¼ p
H

sinh pðzþaÞ
H

h i
cosh pa

H

� 	 ð24Þ
the SIF of the DCB under consideration can be derived as
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ffiffiffi
2

p
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where h is the distance of the concentrated load from the crack tip in the w-plane and thus, should be

expressed in terms of that in the z-plane using the transformation considered:
h ¼
cosh pa

H

� 	
� cosh pða�bÞ

H

h i
cosh pa

H

� 	 ð26Þ
Substituting this into Eq. (25), results in
KIII ¼
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It is observed that when the concentrated traction coincides with the crack tip (b ¼ 0), the SIF approaches

infinity. Furthermore, by letting H ! 1, the problem reduces to that of two bonded elastic quarter planes

with an interfacial edge crack:
KIII ¼
2Pffiffiffiffiffiffi
pb

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
2a� b

r
ð28Þ
which is in agreement with the published results by Choi et al. (1994) and Lee and Earmme (2000).

Meanwhile, letting a ! 1 in Eq. (28), the problem resembles the infinite space with an edge crack of Fig.

6(b) and we obtain
KIII ¼
ffiffiffi
2

p
Pffiffiffiffiffiffi
pb

p ð29Þ
which coincides with Eq. (18). In addition, letting a ! 1 directly in Eq. (27), the SIF for a semi-infinite
crack in an infinite strip should be obtained
KIII ¼
P

ffiffiffi
2
H

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e �pb

Hð Þ
q ð30Þ
which coincides with the result in the literature (Sih, 1973) except for a constant
ffiffiffi
p

p
due to the difference in

the SIF definition.
Now, considering that the concentrated tractions are applied at the edges of DCB, i.e., z ¼ �aþ ic, the

transformed distance of the load to the crack tip in the w-plane will be
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Substituting this relation into Eq. (25), the SIF of the DCB in this case will be
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In the special case when H ! 1, the problem reduces to that of two bonded quarter planes with an in-

terfacial edge crack subjected to antiplane concentrated tractions on the free edges of the quarter planes and

computing the limiting value of Eq. (32) yields
KIII ¼
2Pffiffiffi
p

p
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a
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ð33Þ
5. The SIF in bonded wedges containing an interfacial edge crack

Shahani (2001) proved that when the first tip of a finite crack, lying at the interface of two bonded
wedges with equal apex angles a (Fig. 7), coincides with the apex, the singularity at this tip vanishes and the

following result could be obtained:
f ðrÞ ¼ � P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc þ hc

p

lea
rc�1ðbc � rcÞ�

1
2

rc þ hc
; c ¼ p

a
ð34Þ
where f ðrÞ is the density function of the screw dislocations, b indicates the crack length in this case, h is the

distance of the concentrated tractions to the wedge apex and le is the equivalent shear modulus of the bi-

material wedge and is defined as le ¼ l1l2
l1þl2

. It is now possible to calculate the SIF for the edge-cracked

composite wedge of Fig. 7, using the following definition:
KIII ¼ � lim
r!b
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� rÞ

p
f ðrÞ ð35Þ
Fig. 7. Bonded wedges with an interfacial edge crack.
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which gives after some mathematical procedures:
KIII ¼ P

ffiffiffi
2

a
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r
; c ¼ p

a
ð36Þ
In the special case of bonded quarter planes with an interfacial edge crack a ¼ p
2

� 	
, Eq. (36) gives
KIII ¼
2Pffiffiffi
p

p
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b
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r
ð37Þ
Keeping in mind the difference between the notations of the crack length and the distance of concentrated

tractions from the apex, this is exactly the same as Eq. (33).

Another special case can be deduced by letting a ¼ p, which corresponds to the problem of bonded

dissimilar half planes with interfacial edge crack where the concentrated tractions are applied at a distance

bþ h from the crack tip:
KIII ¼
ffiffiffi
2

p
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðbþ hÞ
p ð38Þ
which is coincident with the results obtained in Eqs. (18) and (29).
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